14,233 research outputs found

    A new proof of a Nordgren, Rosenthal and Wintrobe Theorem on universal operators

    Get PDF
    A striking result by Nordgren, Rosenthal and Wintrobe states that the Invariant Subspace Problem is equivalent to the fact that any minimal invariant subspace for a composition operator Cφ induced by a hyperbolic automorphism φ of the unit disc D acting on the classical Hardy space H² is one dimensional. We provide a completely different proof of Nordgren, Rosenthal and Wintrobe’s Theorem based on analytic Toeplitz operators

    Comment on 'Exact solution of resonant modes in a rectangular resonator'

    Get PDF
    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation

    Elliptical beams

    Get PDF
    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others

    Normalization of the Mathieu-Gauss optical beams

    Get PDF
    A series scheme is discussed for the determination of the normalization constants of the even and odd Mathieu-Gauss (MG) optical beams. We apply a suitable expansion in terms of Bessel-Gauss (BG) beams and also answer the question of how many BG beams should be used to synthesize a MG beam within a tolerance. The structure of the normalization factors ensures that MG beams will always be normalized independently of the particular normalization adopted for the Mathieu functions. In this scheme, the normalization constants are expressed as rapidly convergent series that can be calculated to an arbitrary precision
    • …
    corecore